Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Virol Sin ; 36(5): 1113-1123, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1439763

ABSTRACT

SARS-CoV-2 has caused more than 3.8 million deaths worldwide, and several types of COVID-19 vaccines are urgently approved for use, including adenovirus vectored vaccines. However, the thermal instability and pre-existing immunity have limited its wide applications. To circumvent these obstacles, we constructed a self-biomineralized adenovirus vectored COVID-19 vaccine (Sad23L-nCoV-S-CaP) by generating a calcium phosphate mineral exterior (CaP) based on Sad23L vector carrying the full-length gene of SARS-CoV-2 spike protein (S) under physiological condition. This Sad23L-nCoV-S-CaP vaccine was examined for its characteristics of structure, thermostability, immunogenicity and avoiding the problem of preexisting immunity. In thermostability test, Sad23L-nCoV-S-CaP could be stored at 4 °C for over 45 days, 26 °C for more than 8 days and 37 °C for approximately 2 days. Furthermore, Sad23L-nCoV-S-CaP induced higher level of S-specific antibody and T cell responses, and was not affected by the pre-existing anti-Sad23L immunity, suggesting it could be used as boosting immunization on Sad23L-nCoV-S priming vaccination. The boosting with Sad23L-nCoV-S-CaP vaccine induced high titers of 105.01 anti-S1, 104.77 anti-S2 binding antibody, 103.04 pseudovirus neutralizing antibody (IC50), and robust T-cell response of IFN-γ (1466.16 SFCs/106 cells) to S peptides, respectively. In summary, the self-biomineralization of the COVID-19 vaccine Sad23L-nCoV-S-CaP improved vaccine efficacy, which could be used in prime-boost regimen for prevention of SARS-CoV-2 infection in humans.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adenoviridae/genetics , Animals , Humans , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , Vaccine Efficacy
3.
Front Immunol ; 12: 724047, 2021.
Article in English | MEDLINE | ID: covidwho-1405412

ABSTRACT

Objectives: Impact of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic on individuals with arthritis has been highlighted whereas data on other rheumatic diseases, e.g., systemic lupus erythematosus (SLE), are scarce. Similarly to SLE, severe SARS-CoV-2 infection includes risks for thromboembolism, an unbalanced type I interferon response, and complement activation. Herein, SARS-CoV-2 antibodies in longitudinal samples collected prior to vaccination were analyzed and compared with SLE progression and antinuclear antibody (ANA) levels. Methods: One hundred patients (83 women) with established SLE and a regular visit to the rheumatologist (March 2020 to January 2021) were included. All subjects donated blood and had done likewise prior to the pandemic. SARS-CoV-2 antibody isotypes (IgG, IgA, IgM) to the cell receptor-binding S1-spike outer envelope protein were detected by ELISA, and their neutralizing capacity was investigated. IgG-ANA were measured by multiplex technology. Results: During the pandemic, 4% had PCR-confirmed infection but 36% showed SARS-CoV-2 antibodies of ≥1 isotype; IgA was the most common (30%), followed by IgM (9%) and IgG (8%). The antibodies had low neutralizing capacity and were detected also in prepandemic samples. Plasma albumin (p = 0.04) and anti-dsDNA (p = 0.003) levels were lower in patients with SARS-CoV-2 antibodies. Blood group, BMI, smoking habits, complement proteins, daily glucocorticoid dose, use of hydroxychloroquine, or self-reported coronavirus disease 2019 (COVID-19) symptoms (except fever, >38.5°C) did not associate with SARS-CoV-2 antibodies. Conclusion: Our data from early 2021 indicate that a large proportion of Swedish SLE patients had serological signs of exposure to SARS-CoV-2 but apparently with a minor impact on the SLE course. Use of steroids and hydroxychloroquine showed no distinct effects, and self-reported COVID-19-related symptoms correlated poorly with all antibody isotypes.


Subject(s)
Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , Antibodies, Viral/blood , Female , Humans , Immunoglobulin Isotypes/blood , Immunoglobulin Isotypes/immunology , Immunosuppressive Agents/therapeutic use , Lupus Erythematosus, Systemic/drug therapy , Male , Middle Aged , SARS-CoV-2
4.
Emerg Microbes Infect ; 10(1): 1002-1015, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1231006

ABSTRACT

ABSTRACTCOVID-19 vaccines are being developed urgently worldwide. Here, we constructed two adenovirus vectored COVID-19 vaccine candidates of Sad23L-nCoV-S and Ad49L-nCoV-S carrying the full-length gene of SARS-CoV-2 spike protein. The immunogenicity of two vaccines was individually evaluated in mice. Specific immune responses were observed by priming in a dose-dependent manner, and stronger responses were obtained by boosting. Furthermore, five rhesus macaques were primed with 5 × 109 PFU Sad23L-nCoV-S, followed by boosting with 5 × 109 PFU Ad49L-nCoV-S at 4-week interval. Both mice and macaques well tolerated the vaccine inoculations without detectable clinical or pathologic changes. In macaques, prime-boost regimen induced high titers of 103.16 anti-S, 102.75 anti-RBD binding antibody and 102.38 pseudovirus neutralizing antibody (pNAb) at 2 months, while pNAb decreased gradually to 101.45 at 7 months post-priming. Robust T-cell response of IFN-γ (712.6 SFCs/106 cells), IL-2 (334 SFCs/106 cells) and intracellular IFN-γ in CD4+/CD8+ T cell (0.39%/0.55%) to S peptides were detected in vaccinated macaques. It was concluded that prime-boost immunization with Sad23L-nCoV-S and Ad49L-nCoV-S can safely elicit strong immunity in animals in preparation of clinical phase 1/2 trials.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunization, Secondary , SARS-CoV-2/immunology , Adenoviridae/genetics , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/adverse effects , Female , Genetic Vectors , HEK293 Cells , Humans , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL